Stability of Caprolactam Resin against γ-Ray Irradiation in HNO3

T. Nishida1, M. Nogami1, and N. Sato2

1Graduate School of Science and Engineering Research, Kinki University
2Research Reactor Institute, Kyoto University

INTRODUCTION: We have previously reported that the property of structure change in a cyclic monoamide resin consisting of poly-N-vinyl-ε-caprolactam (VEC) with a 7-membered ring by γ-ray irradiation in HNO3 is different from that in polyvinylpolypyrrolidone (PVPP), another cyclic monoamide resin with a 5-membered ring[1]. Namely, while relatively stable plural neighboring C=O groups (structure (a) in Fig. 1) were introduced for PVPP[2], such neighboring C=O groups were not observed for VEC. In this study, to clarify the more detailed degradation property of VEC, other irradiated samples were prepared and analyzed. Water-soluble N-methyl-ε-caprolactam (MEC) was also irradiated in HNO3 to evaluate the stability of VEC quantitatively.

EXPERIMENTS: γ-Ray irradiation to VEC was carried out similarly to the earlier study (max. 1.5 MGy)[1]. For the sample of MEC, a solution containing 1 mol/dm3 (= M) MEC and 6 M HNO3 was prepared. The sample solution was put in a Pyrex tube and irradiated by the 60Co source at max. 8.8 kGy/h up to 2.1 MGy at room temperature under ambient atmosphere. Irradiated samples were analyzed by 1H and 13C NMR. DMSO-d6 containing a known weight of TMS which is a standard material was used as the NMR solvent. The residual ratio of MEC was calculated by the area ratio of each signal with that of TMS.

RESULTS: A crystal was observed from the supernatant obtained from the irradiated VEC. The crystal was identified as succinic acid by 13C NMR analysis. The structure change in VEC is expected from the result as shown in Fig. 2, which suggests that the major route of change in chemical structure of VEC is basically identical to that of PVPP and that the resulting dicarboxylic acids differ corresponding to the number of carbon in the cyclic monoamides. The scheme is consistent with the above-mentioned fact that plural neighboring C=O groups were not observed for VEC. These facts also imply that a 5-membered ring would be necessary to obtain plural neighboring C=O groups under the present irradiation condition.

REFERENCES:
Search for Ultraviolet Photons from Precipitated 229mTh Samples

Y. Yasuda, Y. Kasamatsu, Y. Shigekawa, T. Ohtsuki, K. Takamiya, A. Shinohara

Graduate School of Science, Osaka University
1Research Reactor Institute, Kyoto University

INTRODUCTION: The first excited state of 229Th lies in extremely low energy level. The excitation energy was reported to be 7.8 ± 0.5 eV [1]. This energy corresponds to vacuum ultraviolet light, and it is expected that the decay rate of 229mTh varies drastically depending on their chemical forms [2]. Furthermore, chemical conditions can affect the decay mode of 229mTh (internal conversion and/or gamma ray transition). It is also expected that 229mTh can be applied to a nuclear clock which has about two orders higher precision than the most precise optical clock [3]. Hence, many studies have been performed to observe the decay of 229mTh, especially on photon detection. However, there are not clear results directly observing the decay. It is important to observe the photons emitted from the 229mTh on various chemical conditions to understand the decay property of the state.

This report describes the results of photon detection for the several samples containing 229mTh with different chemical forms: hydroxide and fluoride.

EXPERIMENTS: Thorium-229m was separated from the mother nuclide 233U by using anion-exchange method. About 200 mg of 233U, containing less than 1 ppm of 232U, was adsorbed on the anion-exchange resin (Dowex 1×8, 200-400 mesh, 2.5 mL). Five-milliliters of 9 M HCl solution was poured into the column several times to remove 229mTh and the daughter nuclides. After 229mTh was grown in the column for a certain time: about 2 or 13 h, 5 mL of 9 M HCl solution was passed through the column to elute 229mTh. To prepare the hydroxide samples, 20 µL aliquot of samarium standard solution was added and then aqueous NH$_3$ was added to the eluent until the solution became basic. When the fluoride samples were prepared, 30 µL aliquot of samarium standard solution and 2 mL of HF solution were added to the eluent and the solution was stirred for 2 min. Thorium-229m was coprecipitated with samarium as hydroxide or fluoride form. Each precipitate was collected on a polypropylene filter and heated to dryness.

Setup for photon detection is schematically illustrated in Fig. 1. To measure vacuum ultraviolet ray from 229mTh samples, we used a photomultiplier tube (PMT) for photon counting, Hamamatsu R6837, which detects 4-10 eV photons with higher than 10 percent quantum efficiency. Signals from PMT were amplified with the pre-AMP and PM-AMP. Noise was cut with the discriminator, and the signal data were accumulated in the multichannel analyzer.

RESULTS: In the case of the hydroxide and fluoride samples of 229mTh grown for about 2 h, the count rates of photons were almost the same with those of the background. In contrast, for the 229mTh samples grown for about 13 h, the photon emissions decaying for time were detected and the half-lives were about 1 h for hydroxide and 3 h for fluoride. For example, the result for the 229mThF$_4$ sample grown for about 13 h is shown in Fig. 2. These decaying photon emissions, however, did not seem to be the simple decay curve. In addition, if the half-lives of 229mTh were several hours, the photon emissions are expected to be observed for the samples grown for 2 h. Therefore, these photons might derive from the Cherenkov radiation induced by the decay of daughter nuclides such as Bi or Pb. To clarify the origin of these photons, we plan to purify 229mTh before measurement.

REFERENCES: