I. Project Research

Project 4
Clinical research on explorations into new application of BNCT

M. Suzuki and H. Yanagie1,2,3
Institute for Integrated Radiation and Nuclear Science, Kyoto University
1Institute of Engineering Innovation, School of Engineering, The University of Tokyo,
2Cooperative Unit of Medicine & Engineering, The University of Tokyo Hospital,
3Research Institute of Healthy Living, Niigata University of Pharmacy & Applied Life Sciences.

An accelerator-based boron neutron capture therapy (BNCT) system and boronophenylalanine (BPA)-based new drug were approved by the Ministry of Health, Labour and Welfare of Japan for the treatment of locally unresectable recurrent or unresectable advanced head and neck cancer on March 2020. Since BNCT will be carried out at the medical institute, the accessibility of BNCT will improve dramatically and much greater patients will be treated with accelerator-BNCT compared with reactor-BNCT.

In 2019, under the Law on Clinical research* (rinsho kenkyu hou), clinical researches on BNCT for local recurrent breast cancer and angiosarcoma have been approved.

*Law on Clinical research (rinsho kenkyu hou) New regulation on clinical research, Law on clinical Research (rinsho kenkyu hou), has come into effect since April in 2018. Clinical researches conducted by using Drugs and Medical Devices not approved under the Pharmaceutical and Medical Device LAW are categorized into Specified Clinical Research (tokutei rinsho kenkyu). Specified Clinical Research Plan should be reviewed by Certified Clinical Research Review Committee. Since BNCT is carried out using unapproved drug (boron compound) and research reactor, BNCT study is categorized into Specific Clinical Research. Six clinical researches on BNCT have been approved as Specific Clinical Research by Certified Clinical Research Review Committee established in medical institutes.

In this research projects, two researches are included.

P4-1: We treated one patient suffering from angiosarcoma of the face in this research program. Since the patient treated with BNCT in this research problem are under-observation, no detailed report is available.

P4-2: No patient was enrolled in this clinical research program. Yanagie et al. reported a preclinical study on syringe-shaped medical device attached with Shirasu porous glass (SPG) membrane to the preparation of 10BSH-entrapped WOW emulsion for clinical use. Details in this case report is referred to the P4-2 report.
Clinical research on explorations into new application of BNCT

1Department of Breast and endocrine surgery, Osaka Medical Collage
2Department of Ophthalmology, Osaka Medical Collage
3Department of Dermatology, Osaka Medical College
4Department of Radiology Osaka Medical College
5Department of Neurosurgery, Osaka Medical College
6Cancer center, Osaka Medical College
7Department of Orthopedic Surgery, Hyogo Cancer Center

An accelerator-based boron neutron capture therapy (BNCT) system and boronophenylalanine (BPA)-based new drug were approved by the Ministry of Health, Labour and Welfare of Japan for the treatment of locally unresectable recurrent or unresectable advanced head and neck cancer on March 2020. Since BNCT will be carried out at the medical institute, the accessibility of BNCT will improve dramatically and much greater patients will be treated with accelerator-BNCT compared with reactor-BNCT. One of the drawbacks of BNCT is that thermal neutrons necessary for tumor control cannot be delivered to the deep portion of the tumor which is located at > 6 cm in depth from the skin surface.

For BNCT to be recognized as effective treatment modality for malignant tumor, expanding indication of BNCT is very important.

We treated one patient suffering from angiosarcoma of the face in this research program. Since the patient treated with BNCT in this research problem are under-observation, no detailed report is available.
Preparation of Boron entrapped WOW emulsion by Mixing Medical Device for Boron Neutron Capture Therapy to Hepatocellular Carcinoma

Hironobu Yanagie1,2,3, Mitsuteru Fujihara4, Ryuji Mizumachi5, Yuji Murata3, Yuriro Sakurai1,2,3, Atsuko Shinoara6,7, Takehisa Matsukawa8, Ayano Kubota7, Yasuyuki Morishita4, Novriana Dewi9, Masashi Yanagawa2, Kazuhito Yokoyama2, Shushi Higashi10, Kouji Seguchi10, Ichiro Ikushima11, Yoshinori Sakurai12, Hiroki Tanaka12, Minoru Suzuki12, Shinichiro Masunaga12, Koji Ono13, Minoru Ono12,14, Jun Nakajima12,15, and Hiroyuki Takahashi1,2

1Institute of Engineering Innovation, School of Engineering, The University of Tokyo, 2Cooperative Unit of Medicine & Engineering, The University of Tokyo Hospital, 3Research Institute of Healthy Living, Niigata University of Pharmacy & Applied Life Sciences, 4SPG Techno Ltd. Co., 5LSI Medience Ltd Co, 6The Graduate School of Seisen University, Jyuntendo University, 7Dept. of Human & Molecular Pathology, Graduate School of Medicine, The University of Tokyo, 8Veterinary Medical Center, Obihiro University of Agriculture & Veterinary Medicine, 9Dept. of Surgery, Kojin-kaib City East Hospital, 10Dept. of Radiology, Miyakonojo Metropolitan Hospital, 11Kyoto Univ. Institute for Integrated Radiation & Nuclear Science, 12Kansai BNCT Medical Center, Osaka Medical College, 13Dept. of Cardio Surgery, The University of Tokyo Hospital, 14Dept. of Pulmonary Surgery, The University of Tokyo Hospital, JAPAN.

INTRODUCTION: Hepatocellular carcinoma (HCC) is one of the difficult cancers to cure with conventional treatment. Higashi et al prepared a long term inseparable Water-in-oil-in-water(WOW) emulsion for use in arterial injection therapy to treat patients with HCC by the double emulucidating technique[1]. Suzuki et al. had reported the tumor growth suppression by BNCT using boron compound with IPSO administered intra-arterially[2]. We performed preclinical BNCT study using 10BH-entraped WOW [3], and had experienced clinical BNCT study for HCC using this system[4].

In this study, we developed syringe-shaped medical device attached with Shirasu porous glass (SPG) membrane to the preparation of 10BH-entraped WOW emulsion for clinical use, and evaluated the boron encapsulating activity to measure the 10B concentrations of WOW emulsion by using ICP-Mas.

EXPERIMENTS: We developed the syringe-shaped medical device by attaching to SPG Millipore membrane. 10BH (262.5 mg) was dissolved in 1.5 ml of a 5% glucose solution, which was first filtered through an SPG controlled pore glass membrane and then emulsified in 1.5 ml IPSO containing surfactant to form the water-in-oil emulsion (WO). The WO emulsion was then emulsified again with an aqueous phase containing 3 ml saline solution and surfactant through a second SPG controlled pore glass membrane using this medical device. The 10B concentration in WOW vesicles was determined by ICP-AES of Jyuntendo University.

RESULTS: By using this device, we were able to produce the WOW emulsion of the same size even after changing the persons who perform the experiment more than ten times. About 7300 ppm 10B concentrations were recognized in the 10BSH-WOW emulsion as same as Day 0 and Day 1 after preparation using Mixing medical device (Table 1).

In the conventional preparation of WOW emulsion, the procedure takes about 6 hours. By using this device, we were able to prepare the WOW emulsion with the single peak of 100 μm in about 30 minutes.

Since WOW emulsion can deliver high amounts of 10B to tumor as the first targeting delivery to tumor. We hope to develop the second targeting delivery to cancer cells with the increase of mechanism by endocytosis, fusion, etc.

Table 1. 10B concentration in 10BSH-entrapped WOW emulsion prepared by Mixing medical device

<table>
<thead>
<tr>
<th>10BSH-WOW</th>
<th>DAY0</th>
<th>DAY1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6626.3</td>
<td>N.D.</td>
</tr>
<tr>
<td>2</td>
<td>7333.0</td>
<td>N.D.</td>
</tr>
<tr>
<td>3</td>
<td>7213.0</td>
<td>N.D.</td>
</tr>
<tr>
<td>4</td>
<td>7829.6</td>
<td>N.D.</td>
</tr>
<tr>
<td>5</td>
<td>7726.0</td>
<td>N.D.</td>
</tr>
<tr>
<td>Mean</td>
<td>7345.6</td>
<td>7386.9</td>
</tr>
<tr>
<td>S.D.</td>
<td>478.0</td>
<td>436.3</td>
</tr>
</tbody>
</table>

Lactose-WOW

1	0.07	0.19	0.02	0.25
2	0.04	0.2	0.11	0.45
3	0.05	0.18	0.07	0.32
4	0.05	0.29	0.08	0.34
5	0.05	0.20	0.08	0.32
Mean	0.05	0.21	0.07	0.33
S.D.	0.01	0.04	0.03	0.07

The original 10B concentration (ppm) in WOW emulsion was determined using ICP-AES at Jyuntendo University.

REFERENCES: