金属ガラスの組織形成過程への ASWAXSの適用

京都大学 工 材料工学専攻

奥田浩司

Outline

- 1. 金属ガラスの構造と興味
- 2. 小中角散乱法(SWAXS)による

析出組織測定について

- 3. Zr基2元系における解析
- 4. Zr基3元系における解析

5. 今後の展開

(6) 小角関連そのほかいろいろ

原子ーナノスケールの評価:

放射光小角・高角同時測定のメリット

• 特徵 : 階層性

1.組成分布と規則度の変化の関係:

規則化と相分離

2.組成分布と結晶化の関係:

アモルファスの結晶化と相分離、規則化 3.組成分布と歪(格子定数)変化の関係 自己規則化ナノドットの形成と内部歪、 内部規則度の関係

同時計測:同じ領域、感度、分解能など

SWAXS(SAS+規則反射)で何がわかるのか

異常小中角散乱法について

- Anomalous Small and Wide Angle X-ray Scattering (ASWAXS)
- → 異常分散効果を利用して小角散乱測定と高角回折測 定を同時におこなう。 特徴として小角と同じq分解能を 高角側でも求める。
 - <特徴>
 - 小角: 元素識別によるコントラスト変化/コントラスト分離
 - 高角: 原子のサイト識別によるコントラスト変化(結晶

構造因子) + 並進対称性のコヒーレンス

→ ガラスの場合、小角散乱の起源と、(準)結晶子の単結 晶性についての議論が可能になる。

Zr基金属ガラスの構造

Origin of ASAXS intensity ?

density fluctuation

$$f(q) = \int \Delta f(r) \Delta f(r+r') dr \exp(iqr') dr'$$

$$\overline{f(E)}^{2} \int \Delta n(r) \Delta n(r+r') dr \exp(iqr') dr'$$

compositional fluctuation $I(q) = \int \Delta f(r) \Delta f(r+r') dr \exp(iqr') dr'$ $\Delta f(r) = \left\{ \sum_{i} c_{i}(r) f_{i}(E) - \overline{f}(E) \right\}$

Result : Enhancement at Far Edge -> density fluctuation with weak compositional modulation

ASWAXS実験(Spring8)

[B]ASAXS

測定結果(Zr吸収端)

contrast variation at near edge

Why vanish at near edge?

Atomic scattering factor drawn in composition triangle in Zr-Al-(Cu,Ni)

$$\Delta c_{(CuNi)} / \Delta c_{(Zr)} = 1.32$$

溶接材のクラスタサイズ変化

- From SAXS (compositional fluctuation)
- At bead/HAZ interface, small cluster is observed. (cluster A)
- At other places, smaller clusters with rather stable radius was found.
 (cluster B : not related to crystal)

cluster size as a function of the distance from the center of the bead. A:Slow, B:Fast weld

Isothermal annealing(quaternary)

ガラス中のナノ構造と結晶/準結晶化

解析モデル:ナノ準結晶の晶出前後

- BinaryCase
- ナノ不均一構造を特徴付けるパラメータは 組成モジュレーション ΔC
- 密度モジュレーション △n
- **の**2種類のみ。
- 2相モデルを採用する場合には△Cと△nは析 出相の内外の差になるので共通の構造因子。
- 2相モデルで表せない場合には共通の構造因 子を持たなくなる。

初期構造の密度揺らぎがランダムであるというモデル

→ Δ c と Δ n が 無相関

2相モデル「のみ」の描像
 1.組成の異なる第二相(ナノ準結晶)
 の核生成
 2.ナノ準結晶の成長とその後の
 成長停止
 → 準結晶核は母相とはことなる∆c、∆nをもつ。
 (コントラスト比はランダムから連続変化)

$$I(q) = \alpha^2 S_{cc}(q) + 2\alpha\beta S_{cn}(q) + \beta^2 S_{nn}(q)$$

Results : Binary ZrPt alloys

- 熱処理条件:
- * as-melt spun,
- * annealed at 800 K for 0.9 - 3.6 ks
- => Precipitation from glass state
- => Metastable phase formation at long annealing (3.6 ks)

Contrast variation for annealed sample : 800 K for 900 s

- ・ ナノQCに対応するq領域での強度比はほとんど一定。
- わずかにNearEdgeが強い程度である。
- → 強度の絶対値以外の問題

異常分散効果から散乱コントラストの原因を探る

$$I(q) = \alpha^2 S_{cc}(q) + 2\alpha\beta S_{cn}(q) + \beta^2 S_{nn}(q)$$

ナノ準結晶の球状晶出物に対するTwo-Phaseモデル

$$I(q, E) = \{\alpha(E)\Delta \tilde{c} + \beta(E)\Delta \tilde{n}\}^2 \Phi^2(qR)$$
$$\alpha(E) = c_0 n_0 (f_{Pt}(E) - f_{Zr}(E))$$
$$\beta(E) = n_0 \overline{f}(E)$$

吸収端近傍と離れた場所での小角散乱強度比は

$$R = \frac{I_{far}(q)}{I_{near}(q)} = \frac{\{\alpha(E_{far})\Delta \tilde{c} + \beta(E_{far})\Delta \tilde{n}\}^{2}}{\{\alpha(E_{near})\Delta \tilde{c} + \beta(E_{near})\Delta \tilde{n}\}^{2}}$$

Okuda et al J.Appl.Cryst.2008.

濃度と密度の揺らぎの関係

ZrCuPt3元系

Stable Bulk Metallic Glasses

Icosahedral clusters stabilize glass against crystallization.

e.g., Simulation by Sheng et al. Nature and other many experimental studies

Abe et al..

JIM proc.

HAADF Image of the AsQ samples

TEM 像と(b)HAADF-STEM 像

Crystallization of metastable phase is strongly suppressed

(ZrCuAlNi system)

How Quasi-crystallization occurs

where 'icosahedral clusters' are

already there ?

Nucleation necessary ? Kinetics?

Result : SWAXS profile (1)

610 K annealing : SAXS and a Bragg peak grow with time.

•Interparticle interference does not appear.

•Intensity continues to increase,

Okuda et al., SAS2009/J.PhysConf.Ser.(2010)

Relationship between sizes of QC

If size distribution with hard sphere is assumed, the magnitude should be

Rg(SAS) > Rg(Bragg) > R(Porod): But, results turn out that

- For polydispersed samples, radius parameters have the statistical meanings as:
- Rs(SAS) $^{2}=< R^{8} > < R^{6} >$
- $Rg(B)^{2} = < R^{6} > / < R^{4} >$
- $R(Porod) = \langle R^3 \rangle / \langle R^2 \rangle$

Rs(**S**A**S**) > **R**(**Porod**) > **R**s(**B**ragg)

Okuda et al. J.Phys.Conf.Ser2010.

まとめ

異常小中角散乱によるコントラスト解析により、金 属ガラス中の不均一構造についてガラス中の揺 らぎと結晶子/準結晶子の形成とは区別して密度 と組成揺らぎの分離を試みた。

また、時分割SWAXSにより、キネティクスの観点か らみたZrCuPtガラスから準結晶の形成過程をみ た。この場合、溶質組成の再分配を伴う構造変 化がCu吸収端で検出され、準結晶の形成が1次 相転移であり、かつサイズがそろっているのはこ のためであると考えられる。

今後、小角で観測されるような構造/密度不均一構 造に感度のある分光法への発展を試みたい。