並列ミニチャネル内鉛直上昇蒸発流の相分布に関する研究

神戸大学 清原圭太,赤坂奎茉 村川英樹,杉本勝美,浅野等

研究背景

LNG気化器や水素ステーションで使用される熱交換器の 高性能化、コンパクト化が求められている.

拡散接合マイクロチャネル熱交換器

高温側と低温側の並列流路板を交互に 積層し拡散接合法によって結合した熱 交換器

http://www.kobelco.co.jp/products/ecmachinery/dche/overvi ew.html **従来と比較して** ・優れた耐圧性

高い伝熱面積密度

研究背景

蒸発器として使用する場合

不均一な熱流束分布によって流路ごとに相変化量に違いがでることが予想される.

相変化量の違いが流路間での圧力損失の違いを生み, 流路に均一に冷媒が流れず,熱交換性能が下がること が懸念される.

流路形状による偏流改善効果

並列ミニチャネル鉛直上昇二相流の相分布に及ぼす 熱流束分布および冷媒流路形状の影響を明らかにする

ヒーター加熱による等熱流束条件で実験を行い, ボイド率分布の可視化・計測結果から流路形状の影響を評価した.

実験装置(ヒーター加熱)

熱交換試験部

被射体 (試験部) 00 シンチレーター 中性子ビーム 水素原子で大きく減衰 中性子線を可視光に変換

シンチレーター上の可視画像を撮影

冷却型CCDカメラ

冷却型CCDカメラ(Andor iKon-L936)

画素数	2048 × 2048 pixel	
レンズ	200 mm	
f値	4.0	
露光時間	8 s	(
撮影枚数	3枚	(ミー ホワイ
画素寸法	56 µm (流路幅:1.7mm)	

(ミニマム処理による ホワイトノイズの除去)

中性子ラジオグラフィによるボイド率計測

原画像

$$\delta:物体の厚さ $ho:密度 μ_m :質量減衰係数$$$

画像の輝度値から減衰した中性子の情報を得ることができる

中性子の減衰の式 $I(x,y) = I_0(x,y) \exp[-\rho_m \mu_m \delta(x,y)]$ 輝度値 S(x,y) = G(x,y)I(x,y) + O(x,y)

ボイド率は3条件の輝度値の比較演算で算出

✓ 蒸気で満たされている場合 $S_{empty}(x,y) = Gexp(-\rho_w \mu_{mw} \delta_w(x,y)) + O(x,y)$ ✓ 気液二相流の場合 $S_n(x,y) = Gexp(-\rho_w \mu_{mw} \delta_w(x,y) - \rho_L \mu_{mL} \delta_L(x,y)) + O(x,y)$ ✓ 液で満たされている場合 $S_{full}(x,y) = Gexp(-\rho_w \mu_{mw} \delta_w(x,y) - \rho_L \mu_{mL} \delta_{full}(x,y)) + O(x,y)$

中性子線照射方向の平均ボイド率

ニ相流での液厚さ

$$\delta_{full}(x,y) = \frac{1}{\rho_L \mu_{mL}} ln\left(\frac{S_{empty}(x,y) - 0}{S_{Full}(x,y) - 0}\right)$$

液単相流での液厚さ
(=流路厚さ)
 $\delta_L(x,y) = \frac{1}{\rho_L \mu_{mL}} ln\left(\frac{S_{empty}(x,y) - 0}{S_n(x,y) - 0}\right)$
ボイド率
(=流路内の蒸気
の体積割合)
 $\alpha(x,y) = 1 - \frac{\delta_L(x,y)}{\delta_{full}(x,y)} = 1 - \frac{ln\left(\frac{S_{empty}(x,y) - 0}{S_n(x,y) - 0}\right)}{ln\left(\frac{S_{empty}(x,y) - 0}{S_{full}(x,y) - 0}\right)}$
ボイド率分布

ヒーターの加熱量の設定

流体加熱実験の熱交換量に基づきヒーター加熱量を決定

	加熱媒体(FC3283)の 質量流束 [kg/m²⋅s]		
	921	2947	
ストレート			
パーフォレートA			
パーフォレートB	•	•	
オフセット			

熱通過率が加熱媒体側熱伝達律速であったため 流路形状および冷媒流量の影響がほとんど確認されず

	質量流束	50,100, 300, 500 kg/(m²s)
冷媒条件	入口サブクール度	2±0.3 , <mark>5±0.3 K</mark>
	飽和温度	27.8 ~ 28.3 ℃
加熱条件 (熱流束)		200, 600 W (45,134 kW/m²)

ボイド率分布(ストレート型200W)

0 Void fraction 0.1

ボイド率分布(ストレート型600W)

ボイド率分布(パーフォレート型200W)

1.0

Void fraction

0

ボイド率分布(パーフォレート型600W)

ボイド率分布(オフセット型200W)

1.0

Void fraction

0

ボイド率分布(オフセット型600W)

入ロサブクール,並列ミニチャネル流路内冷媒沸騰流に対し, ヒーターによる等熱流束加熱条件でのボイド率分布を評価した.

✓ ストレート型流路では特定の流路が液単相流となる様子が確認された.

✓ パーフォレート型およびオフセット型流路による偏流改善効果が確認された.

ボイド率分布から沸騰開始点を特定し、リブ分断部との相関を評価する.

壁面を透明素材とした流動可視化実験を行い、振動流の有無を評価する.