令和5年度中性子イメージング研究会 @京都大学複合原子力科学研究所 2023/12/27

中性子ラジオグラフィによる規則充填物内流動の可視化

O平賀 龍哉(関西大院) 梅川 尚嗣(関西大) 網 健行(関西大) Ryuya HIRAGA Hisashi UMEKAWA Takeyuki AMI

研究背景

研究背景

研究背景

Height Equipment to a Theoretical Plate

F-factor
$$F = u_{\sqrt{\rho_g}}$$

Flooding

<u>研究</u>目的

・充填塔は実測データに 基づいた設計が行われている

・規則充填物の構造が内部流動に 与える影響の詳細情報が少ない ▶ 規則充填物内での三次元的な流動特性把握
 ▶ 充填物構造が流動に与える影響評価

Capacity factor $C_S = j_g \sqrt{\frac{\rho_V}{\rho_L - \rho_V}}$

<u>作動流体</u>

水, エタノール水溶液10, 20, 30, 40, 80%, エタノール

<u>実験条件</u>

	気相(空気)-液相
液相体積流束: <i>j_L</i> [mm/s]	0.1,0.2,0.4,0.9
気相体積流束 : <i>j_G</i> [m/s]	0~1.5

<u>:値</u>					20 [°	°C]
	水	エタノール	エタノール	(液体窒素)	(液体酸素)	
		水溶液 40%				
粘度:μ _L [μPa・s]	1005	2910	1198	158	196	
密度: $ ho_L$ [kg/m 3]	998	935	790	809	1142	
表面張力 $: \sigma_L [{ m mN/m}]$	72.8	29.9	22.4	10.7	13.2	
キャピラリー長: <i>l</i> [mm]	2.73	1.81	1.70	1.16	1.09	
質量減衰係数: μ_m [cm ² /g]	2.68	2.78	3.16	0.430	0.158	

水:76°

エタノール40% :28°

エタノール100%: 15°

<u>CT 再構成</u>

カメラ情報

C-CCD カメラ	Andor iKon-L936
レンズ	85[mm] f 1.4
画素数	2048×2048 [Pixel × Pixel]
空間分解能	106[µm/Pixel]

撮影条件

露光時間	1[s]
回転角度ステップ	0.6[deg.]
総回転角度	180[deg.]
撮影枚数	301[flame]

CT情報

空間分解能	524[µm/Pixel]
再構成手法	Filtered Back projection
フィルター	Shepp and Logan

内部状態は準定常状態と確認

パーフォレート液分配特性

キャピラリ長
$$l = \sqrt{\frac{\sigma}{\rho g}}$$

ウェーバー数:
$$We = \frac{\rho j_L \delta_N^2}{\sigma}$$

キャピラリ長
$$l = \sqrt{\frac{\sigma}{\rho g}}$$

ウェーバー数:
$$We = \frac{\rho j_L \delta_N^2}{\sigma}$$

キャピラリ長
$$l = \sqrt{\frac{\sigma}{\rho g}}$$

ウェーバー数:
$$We = \frac{\rho j_L \delta_N^2}{\sigma}$$

<u>CT断面画像</u>

$$j_L = 0.4 \text{ [mm/s]} j_G = 0 \text{ [m/s]}$$

液透過厚さヒストグラム

検査範囲

液透過厚さヒストグラム

検査範囲

液透過厚さヒストグラム

検査範囲

液透過厚さヒストグラム

検査範囲

液透過厚さヒストグラム

検査範囲

液透過厚さヒストグラム

検査範囲

歪度:
$$\frac{n}{(n-1)(n-2)}\sum_{i=1}^{n}(\frac{x_i-\bar{x}}{s})^3$$

ウェーバー数:*We* =
$$\frac{\rho j_L \delta_N^2}{\sigma}$$

規則充填物内部における液分配, 流動状態の詳細把握を目的として, 模擬充填 塔を中性子ラジオグラフィを用いて可視化し, CT再構成することで3次元的に分 配、流動の評価を行うことを試みた.

- 充填物のシート面方向の液分配は主としてコルゲート構造により行われる。
 このため充填物上部での液拡散はコルゲート構造が形成する45°ラインに 沿って確認できる。
- 充填物シート間の液分配はパーフォレートを介して行われる. 評価手法として 液の存在幅を線形近似することで角度を算出し, キャピラリ長, We数で整理 が可能と考えられる.
- 充填物表面の液の分布様相は、液透過厚さのヒストグラムで特徴が描画される、本系では歪度を用いた評価を行い、ウェーバー数により整理が可能であると考える。
- CT断面画像を利用した定量評価にはさらなるデータの拡充が必要であり、リ ブレットやパーフォレートの影響について、よりミクロな視点での可視化を今 後行う必要性も示された。

空気分離装置について

パーフォレート

固体と液体のぬれの力学、加藤,健司、2016

Rim

Experimental study of liquid films on the structured packing elements of distillation columns, Manasa PERIYAPATTANA, 2021

充填塔A 液流量毎(*j_G*=0[mm/s] *Q_G*=0 [L/min]))

0°

2023.10撮影

 j_L =0.10 [mm/s] (Q_L =0.05 [L/min]) j_L =0.21 [mm/s] (Q_L =0.1 [L/min]) j_L =0.42 [mm/s] (Q_L =0.2 [L/min]) j_L =0.85 [mm/s] (Q_L =0.4 [L/min])

充填塔A 空気流量毎(*j*_L=0.42[mm/s] *Q*_L=0.2 [L/min])

CT再構成画像

メッシュ表面充填物

メッシュ構造充填物

$j_L=0.36$ [mm/s] ($Q_L=0.2$ [L/min])

水

 j_G =0.79 [m/s] (Q_G =434 [L/min])

Normal

Parallel

エタノール

$j_L=0.36$ [mm/s] ($Q_L=0.2$ [L/min])

水

 $j_G=0.79 \text{ [m/s]} (Q_G=434 \text{ [L/min]})$

Parallel

エタノール

 $j_G=0 \text{ [m/s]} (Q_G=0 \text{ [L/min]}) \quad j_G=0.79 \text{ [m/s]} (Q_G=434 \text{ [L/min]})$

CT再構成画像

$$d_{h} = 2.6[\text{mm}]$$
$$\Delta p = \lambda \frac{l}{d_{h}} \frac{\rho_{G} j_{G}}{2}$$
$$\lambda = \frac{64}{Re}$$

$$\Delta p = \lambda \frac{l}{d_h} \frac{\rho_G j_G}{2}$$
$$\lambda = \frac{64}{Re}$$

 $\Rightarrow d_h = 2.6[\text{mm}]$

